REDUCING THE SEARCH TIME OF A
GENETIC ALGORITHM USING THE
IMMIGRATION OPERATOR

Np&W-/333

by

Michael C. Moed, Charles V. Stewart, and Robert B. Kelley

Rensselaer Polytechnic Institute
Electrical, Computer, and Systems Engineering
and
Department of Computer Science
Troy, New York 12180-3590

October, 1990

CIRSSE REPORT #69



REDUCING THE SEARCH TIME OF A GENETIC

ALGORITHM USING THE IMMIGRATION OPERATOR

Michael C. Moed{, Charles V. Stewart! and Robert B. Kelleyt

tCenter for Intelligent Robotic Systems for Space Exploration (CIRSSE)

Department of Electrical, Computer and Systems Engineering
{Department of Computer Science

Rensselaer Polytechnic Institute
Troy, New York 12180-3590

Abstract

This paper examines the fundamental tradeoff between ezploration and exploitation
in a Genetic Algorithm (GA). An immigration operator is introduced, that infuses
random members into successive GA populations. It is theorized that immigration
maintains much of the exploitation of the GA while increasing exploration. To test
this theory, a set of functions are designed that often require the GA to perform an
excessive number of evaluations to find the global optimum of the function. For these
functions, it is shown experimentally that a GA enhanced with immigration (1) reduces
the number of trials that require an excessive number of evaluations and (2) decreases

the average number of evaluations needed to find the function optimum



I. Introduction

The tradeoff between exploration and exploitation in serial Genetic Algorithms (GA’s) for
function optimization is a fundamental issue [1]. If a GA is biased towards exploitation,
highly fit members are repeatedly selected for recombination. Although this quickly pro-
motes better members, the population can prematurely converge to a local optimum of
the function. On the other hand, if a GA is biased towards exploration, large numbers of
schemata are sampled which tends to inhibit premature convergence. Unfortunately, exces-
sive exploration results in a large number of function evaluations, and defaults to random
search in the worst case. To search effectively and efficiently, a GA must maintain a balance

between these two opposing forces.

This study experimentally examines an immigration operator which, for certain types
of functions, allows increased exploration while maintaining nearly the same level of ex-
ploitation for the given population size. Section II provides relevant background material
on this topic and develops the motivation for this study. In section III, we describe the im-
migration operator, its incorporation into the evaluation, selection and recombination cycle
of a Genetic Algorithm, and predict the behavior of the “Modified” Genetic algorithm.
In section IV, the implementation of two genetic algorithms is described. One algorithm
is based on steady state GA’s, and the other is based on restarted GA’s as described by
Goldberg [2]. Also described is the implementation of the two GA’s modified with the

immigration operator.

To compare the performance of each GA with and without immigration, a suite of test
functions is developed. Each function is characterized by different types of local and global
optima. The local optima are designed to provide traps that the genetic algorithm must
successfully avoid or recover from in order to achieve a global optimum. These functions are
defined in section V. Section VI discusses the experiments performed on the test suite and
presents each GA experiment in terms of fitness assignment, population sizes, mutation
rate and immigration rate. The results of the GA experiments are examined in terms
of the number of evaluations required to find the global optimum of each function and
are presented in Section VII. It is shown that a GA modified with immigration reduces
the average number of evaluations required to find the function optimum over a range of
population sizes. It is further shown that the number of trials requiring an excessive number
of evaluations is reduced for functions in this set. Section VIII provides conclusions and

recommendations for further research.



II. Background and Motivation

Population size is one parameter that directly effects the balance between exploration and
exploitation. DelJong (3] noted that increasing the population size improves long-term
performance of a GA at the expense of on-line performance for his test suite. In an extensive
study, Schaffer et. al. [4] tested GA parameters for an expanded suite of functions and
measured on-line performance. The study indicated that functions with many local optima
have good on-line performance with larger population sizes. However, the study noted that
an excessively large population imposes an increased number of evaluations per generation
and produces poor overall performance.

As these studies showed, increasing the population size of a GA supplements the amount
of “raw material” available for processing. If the necessary material is present in the initial
population, the GA can converge on an optimal solution. If the initial population size is
very large, the optimal schemata may very likely be present and the optimal solution will
be found.

However, large population size can lead to an inefficient GA. The GA processes the
schemata contained in the “raw material” and exploits those schemata that perform well. As
the population size grows and the selection “pie” is divided into more slices, the exploitation
decreases. A decrease in exploitation means that better schemata propagate at a slower rate.
This forces the GA to increase the number of population samples over repeated generations

in order to determine the optimal schemata, and slows convergence of the GA.

Goldberg (2] also emphasized the tradeoff between schema processing (exploration) and
convergence rate (exploitation) with regard to population size. To combat slow conver-
gence in serial GA’s while finding the optimum of a function, Goldberg suggested using
small population GA’s that are restarted after convergence. The restart procedure consists
of keeping only the best individuals of the converged population and replacing other mem-
bers by randomly generated individuals. Goldberg shows that this procedure maintains a
high rate of schema processing, a cost measure developed to examine GA performance. In-
tuitively, this technique maintains a very high level of exploitation, since small populations
rapidly converge to the best schemata present. Exploration is also enhanced by restarting
the population with random members after convergence. Therefore, this technique seems
to achieve some balance between the two GA forces.

Given that small population GA’s may not possess the necessary schemata to find the
optimal solution, and large population GA’s can be inefficient in schema processing, this

study examines the effect of continually replacing the worst members of a GA population



with random members. The technique is called immigration. For GA’s of the type tested
by DeJong [3] and Schaffer et. al. [4], immigration increases the amount of “raw ma-
terial” available to the GA, and enhances exploration without increasing population size.
For Goldberg’s restarted GA, immigration allows increased exploration while the popula-
tion converges, and may prevent quick convergence to a local optimum. This is especially

significant if the test function contains local optima that are difficult to escape.

III. A GA with the Immigration Operator

To balance exploration with exploitation, we propose the following algorithm that incor-
porates the immigration operator into the general structure of a Genetic Algorithm. A
preliminary version of this algorithm was originally presented in [5].

The Modified Genetic Algorithm

1. Evaluate each member of the population and assign a fitness value.

2. Replace m current worst members of the population with m randomly generated and

evaluated members. (Immigration Operator)
3. Probabilistically select a subset of members based on fitness.
4. Recombine selected members to form children.
5. Replace the worst members of the population with children.

6. Mutate some members to maintain population diversity and perform local search.

Mutation is not performed on one copy of the current best member.

With each generation of the GA, random members are immigrated and replace the worst
members in the population. It is important to note that the number of random individuals
substituted into the population each generation (m, called the immigration rate) is small
compared to the size of the population. The advantages and tradeoffs of immigration are

described below:

1. When a GA is initialized its population of n random members must contain most
of the “raw material” required to assemble the optimal string through selection and
crossover. With smaller population GA’s. the necessary schemata to build the optimal
string may not be present in the initial population. If this is the case, the GA must

rely on mutation to bring in the necessary schemata, which can be very inefficient,



especially in problems with many local optima. The immigration operator allows
the GA to sample many more individuals during search, and more easily acquire the
necessary structure to find the optimal string. However, immigration does not increase
the size of the population, since random members replace poor performers. Therefore,

immigration allows a size n population to explore the space of a larger population.

2. Since the actual population size is not increased to accomplish the added exploration,
the high performing schemata in the population can propagate at nearly the same
rate as a GA without immigration. In contrast, if the population size is increased
to enhance exploration, the schemata propagate more slowly, due to decreased selec-
tion pressure on good schemata. Therefore, immigration increases exploration while

maintaining selection pressure (exploitation).

3. When a GA operates on a deceptive function, low-order schemata that are present
in the optimal string have poor average fitness values. Individuals containing these
schemata perform poorly, and are replaced in the population during the selection and
recombination process. Immigration provides the GA with repeated opportunities to

acquire optimal building blocks, even after they have been discarded.

4. The inclusion of an immigration operator does force a tradeoff in the GA. Immigra-
tion exchanges poor performers with random members. Each random member must be
evaluated, which may increase the number of evaluations required to find the function
optimum. However, immigrants can also bring missing structure to the population
which should reduce the number of evaluations required to find the optimum. There-
fore, the tradeoff of increased evaluations vs. increased structure must be examined

experimentally to determine the applicability of immigration in a GA.

One way to look at a GA modified with the immigration operator is as a GA with a large

“virtual” population that maintains much of the selection pressure of a smaller population.

IV. The Implementation of Two Genetic Algorithms

In this study, two different GA’s were implemented, each with and without immigration.
The first algorithm is a steady state GA. Each iteration of the algorithm we used is de-

scribed as follows:



Steady State GA

1. Evaluate each new member of the population and assign a fitness value.

2. Probabilistically select two members from the population based on fitness. These

members are parents.

3. Perform one-point crossover on the parents at a random string position to form two

children.
4. Probabilistically perform mutation on the children.
5. Replace the two worst members of the population with the children.

6. Probabilistically perform mutation on the rest of the population (optional).

The algorithm is modified to include immigration by the addition of the following step:

1.5. Generate and evaluate m random members and replace the m worst members of

the population with the m random members.

The second algorithm is based on Goldberg’s restarted GA. Given a population of size

n, each iteration of the algorithm proceeded as follows:

Restarted GA

1. Evaluate each member of the population and assign a fitness value.
2. Compute the bitwise convergence of the population.

3. If the convergence is greater than a given threshold, replace all but the best two

members of the population with randomly generated and evaluated members.
4. Probabilistically select n - 2 members from the population based on fitness.
5. Randomly order the n - 2 selected individuals and form pairs. These pairs are parents.

6. Perform one-point crossover on each set of parents at a random string position to form
children.

7. Replace the n - 2 worst members of the population with the children.



8. Probabilistically perform mutation on the children.

For selection, the restarted GA used Stochastic Universal Sampling as described by
Baker [6].
The algorithm is modified to include immigration by the addition of the following step:

1.5. Generate and evaluate m random members and replace the m worst members of
the population with the m random members.
Only n -2 members are selected each generation to insure survival of the best two

performing members.

V. Test Suite of Functions

As stated earlier, immigration imposes a tradeoff in a GA. The added structure introduced
by the random members occurs at the cost of evaluating each random member immigrated.
Given this tradeoff, the type of functions where immigration should achieve a favorable
balance between these factors and increase performance of the steady state GA are those
functions with local optima that are difficult to avoid or escape. Functions of this nature
require the steady state GA to be more circumspect while converging, and therefore may
require sampling more structure. Immigration introduces the needed structure, which may
have been discarded from the population. By increasing the structure available to the GA,
immigration should reduce the chance of converging at a local optimum, and thereby reduce
the overall number of function evaluations by the steady state GA.

On the other hand, on functions that are unimodal, a steady state GA with immigration
should perform poorly. A steady state GA operating on a unimodal function has a reduced
chance of losing the structure necessary to find the global optimum. Adding the immigration
operator introduces redundant structure at the cost of function evaluations. In this case,
the tradeoff between added structure vs. added evaluations does not achieve a favorable
balance, since the added structure would already be in the population. Therefore, a steady
state GA with immigration should increase the number of function evaluations required to
find the global optimum of a unimodal function.

It is difficult to predict the effect of immigration on a restarted GA. Like the steady
state GA, immigration should allow a small population GA to sample more structure, and
help prevent the GA from settling into a local optimum from which it is difficult to escape.
This should reduce the number of function evaluations required by the GA for multimodal

functions.
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For unimodal functions, it is reasonable to believe that the small population must con-
verge a number of times before the global optimum of the function is found. Each conver-
gence imports a host of new random members. It is difficult to predict whether importing
random members after convergence is more efficient than immigrating random members
during convergence, since both techniques maintain a high rate of schema processing.

The experimental suite consists of a set of six functions that have different types of local
and global optima. The suite was created to examine the ability of a GA to escape or avoid
difficult local optima. This is reflected in the number of function evaluations required to
find the global optimum of the function. By using a suite of this nature, one can determine
the type of problems that prove difficult for a GA to solve, and show how the immigration
operator affects performance.

Each of the functions is defined on a 20 bit binary string. The optimum cost value
for each function is 0.0, which is the minimumn value of the function. The functions are

described as follows:

1. F1 (ODDEVEN): The purpose of this function is determine how well a GA can com-
bine low-order, high-performing schemata into a structure where good local perfor-

mance may lead to poor global fitness.

A sliding window of length 4 is moved one bit at a time over a twenty bit member.
The maximum cost is assigned 17.0. Each time the pattern 0101 or 1010 appeared
in the window, 1.0 is subtracted from the cost. A pattern of alternating 1’s and 0’s,
01010101010101010101 or its complement produces the minimum cost of 0.0. A string

of all 1’s or all 0’s has the maximum cost of 17.0.

For example, the string 01010111111111111111 has a functional value of 17.0 - 3.0 =
14.0 since there are three 4 bit strings of alternating patterns. The first one starts
at position 0 and is 0101, the second begins at position 1 and is 1010 and the third
begins at position 2 and is 0101.

This function contains local minima (optima) that may trap the GA. Consider the
member 01010101011010101010. This member has a cost of 17.0 - 14.0 = 3.0 which
would indicate that it is a near optimal member. However, the member must actually
invert the values of 10 consecutive bits in order to achieve the the optimal configura-
tion, which is a large Hamming distance. Such large Hamming distance disturbances
are difficult to create through the mutation operator without destroying the good
structure in the population. Therefore, if the population converged around this pat-

tern or a similar one, the GA would be trapped in a local optimum. The example
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demonstrates that the combination of short-order, high-performing building blocks

may produce a string that is far from the global optimum.

. F2 (DECEPT1): The purpose of this function is to determine the performance of a
GA on a difficult, two bit deceptive problem.

The 20 bit member represents four non-overlapping fields, each of length 5 bits. The
maximum cost is assigned 28.0. For each five bit field, 1.2 is subtracted from the
maximum cost for each bit in the field that is a 1. However, if all five bits in the
field are 0, 7.0 is subtracted from the maximum cost. Therefore, a field of five 1 bits
subtracts 6.0 from the maximum cost, so the member 11111111111111111111 has a

cost of 4.0. The minimum cost member is all 0’s, and has a cost of 0.0.

For example, the member 00000111111010100001 subtracts 7.0 for the maximum cost
for bits 0-4, 6.0 for bits 5-9, 3.6 for bits 10-14 and 1.2 for bits 15-20, for a total cost
of 28.0 - 17.8 = 10.2

This function falls within the class of GA-hard problems [1], since it contains low-
order deceptive schemata. These indicate that the function minimum is a string of all
1 bits when it is really a string of all 0 bits. In terms of average member fitness, this

function can be described as:

o f(F.KO* . K) < f(*.. X1XL LK)
o f(*.-X00%. . ¥) < (¥ FOLX.. ¥), f(*. X10%.. ¥) < f(*.. *11*...%)

o Also, f(*.--*¥000*. . %) < f(*.. *111*...%)

. F3 (DECEPT?2): The purpose of this function is to determine the performance of a

GA on a simpler, one bit deceptive problem.

A sliding window of length 4 is moved one bit at a time over the twenty bit member.
The maximum cost is assigned 51.0. At a given window location, each 1 bit in the
window subtracts 0.5 from the maximum value. If all bits in the window are 0, 3.0
is subtracted from the maximum value. The minimum cost of the function is 0.0 and
occurs when each bit in the individual is 0. When each bit in the individual is 1, the

cost is 17.0. For example, the string 11110000111111111111 would have a cost of 22.0.

This function also contains low-order deceptive schemata, that indicate the function
minimum is a string of all 1 bits, when it is really a string of all 0 bits. In terms of

average member fitness, this function can be described as:



o f(*.-XO*. . X) < f(*e 1R LK)
o f(*..*00%. - ¥) < f(*.. *11*.. ¥)

4. F4 (MIRROR): The purpose of this function is to examine the ability of a GA to
process high-performing, high-order schemata while maintaining the consistency of
low-order schemata. The cost function is designed to be much more sensitive to the

high-order schemata than the low-order schemata.

A maximum cost of 39.0 is assigned. Bit 19 of the member is made contiguous to
bit 0 for wrap around. For each bit that is the same as its rightmost neighbor, 0.5
is subtracted from the cost. Also, if bit ¢ (0 < ¢ < 9) and bit ¢ + 10 differ, 3.0 is
subtracted from the cost (e.g. if bit 1 is different from bit 11, 3.0 is subtracted, if bit 2
is different from bit 12, 3.0 is subtracted, etc.). The minimum cost of 0.0 occurs when
a string of ten 1’s is followed by a string of ten 0’s. Since wrap around is allowed, the
pattern can begin anywhere in the member. A string of 1’s or all 0’s has a cost of 20.0
For example, 00001111111111000000 has cost 0.0 since ten 1’s are followed by ten 0’s.
The string 10101010101010101010 has a cost of 9.0.

This function should prove difficult for the GA to solve. Consider the member
00011100001110001111. It has a cost of 2.0 yet it is Hamming distance 6 away from
the optimal solution. This forms a local optimum from which it is very difficult to
escape.

For this function, the major reduction in cost occurs when high-order schemata are
consistent, with a slight reduction when low-order schemata are consistent. As shown
in the example, this can lead to members that have strong high-order consistency, but
poor low-order consistency. This creates local minima that prove difficult for a GA

to avoid or escape.

5. F5 (EIGHTAWAY): This function tests a GA’s ability to assemble schemata that are
of different order. The function is more sensitive to higher-order schemata than it is

to low-order schemata.
A maximum cost of 41.0 is assigned. For each bit ¢ in the member different from bit
i + 1, subtract 0.5 from the cost. Also, the cost is reduced as follows:
(a) For (0 <1 < 4)
i. Let m=id,letn=m+ 8

ii. Repeat

10



A. If bit m is different than bit n subtract 2.0 from the cost.
B. Letm=n. Letn =m + 8
C.lfn>20,n=n-20
iii. Untiln = ¢
The minimum of this function occurs at 01011010101001010101 or its complement. A

member of all 0’s or all 1’s has the maximum value of 41.0

This function forces schema consistency for defining lengths 4, 8, 12 and 16. The
function is very sensitive to these high-order building blocks. Consistency should also
be maintained for low-order schemata, but must be violated in some instances in order
to achieve the optimal string. The local optima this function possesses are similar in
nature to those possessed by the function F4 (MIRROR).

6. F6 (ONEMAX): This is the same bit counting function described by Ackley [7] and is
unimodal. A maximum cost is assigned 20.0. Each 1 bit subtracts 1.0 from the cost.

The minimum cost occurs when all 20 bits are 1 and has a cost of 0.0.

VI. Description of Experiments

The focus of the experiments is to determine the effect of immigration in a Genetic Algo-
rithm on the test suite of functions. As stated earlier, the immigration operator should
increase the exploration of a GA without significantly decreasing the exploitation of the
GA.

For the steady state GA, the increased exploration should prevent the GA from prema-
turely converging and becoming trapped in a local minima. This fact should be reflected in
the number of GA trials that require an excessively long time to find the function optimum.
Also, since the population size is maintained, the GA should have the exploration power of
a larger population with the exploitation of a smaller one. This would be reflected in the
average number of function evaluations required to find the global optimum. Therefore, for

the steady state GA, two performance criteria are examined:

1. The average number of evaluations required to find the function optimum

2. The number of trials that required an excessive number of evaluations to find the

function optimum. These trials are called “outliers”.

For the restarted GA, the inherent reinitialization process should prevent the population

from becoming trapped in a local optimum for many generations. Becoming trapped in a
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local optima leads to an excessive number of evaluations, or an outlier. Since the restarted
GA should prevent this, immigration should not significantly reduce the number of outliers
for an experiment. However, immigration does increase the amount of exploration per-
formed by the GA while the population is converging. The increased exploration may allow
the GA to be more circumspect and avoid local minima. Avoiding local minima should
decrease function evaluations. Therefore, if immigration aids this algorithm, it would be

reflected in the average number of function evaluations required to find the optimum.

A. Design of the steady state GA experiment

Since exploration vs. exploitation is the focus of this work, each function is evaluated over
a range of population sizes. The smallest population size is 30. For each function, the
population sizes are repeatedly incremented by 10 members until the GA performs worse
than with the previous population size.

The fitness function first ranks each member of the size n population. Then, a fitness
value is assigned to each member s using the equation:

n — rank(s)

)

The above fitness assignment curve maps the best member to fitness value 20.0 and the

Fitness(s) = ezp(3
n

worst member to fitness value 1.0. Using these exponential constants, the best 50 percent of
the population has a ratio of 4.5:1 in fitness values. An exponential curve is used to accen-
tuate better performing members while assigning similar fitnesses to poor performers. The
curve also prevents high-performing individuals from taking over the population entirely,
so the fitness function is not unduly sensitive to cost values. Davis [8] has also used ranked
exponential fitness assignment.

The immigration rate m (number of random individuals immigrated each generation) in
the experiments ranges from 0 to 4 individuals per generation. Also, a one-point crossover
scheme is used.

The probability of child mutation is fixed at 0.005 mutations/bit. Early experimentation
determined that the performance of the steady state GA improved when members of the
population other than the current children were allowed to mutate. This seemed most
important as the population began converging, so a dynamic mutation rate as a function

of convergence is used. The dynamic population mutation rate is given by the equation:

Mutations/Bit = 0.015(C - 0.5)
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(where C is the bitwise convergence percentage of the population and ranged from 0.5
to 1.0).

Again, each population member is 20 bits long. Each experiment is assigned a population
size and immigration rate, and is tested with 500 separate GA trials, each with a unique
random population. Each GA trial counts the number of function evaluations until the
global optimum is found. The maximum number of evaluations allowed per trial is 50000.

This is performed on all functions in the test suite.

B. Design of the restarted GA experiment.

For this experiment, the population sizes begin at n = 14. For each function, the popula-
tion size is increased by 2 members until the GA performs worse than with the previous
population size.

The fitness function first ranks each member of the size n population. Then, a fitness
value is assigned to each member s using the equation:

— rank
Fitness(s) = exp( Ls_n—ra_n_(s)

)

which assigns fitness values between 1.0 and 4.5. A smaller exponential constant (1.5
instead of 3.0) is chosen for this small population GA. This provides most of the population
members with some chance to compete. However, this fitness scheme does enforce a 4.5:1
fitness ratio between the best and worst members of the population.

The immigration rate m in the experiments ranges from 0 to 4 individuals per generation.
Also, a one-point crossover scheme is used. The probability of mutation is set at 0.005
mutations/bit.

For functions F1 - F5, the threshold convergence ratio is set 0.85. In other words, when
the population is 85 percent bitwise converged, the two best members are kept and random
members fill the remainder of the population. This convergence ratio was selected after
some experimentation with values of 0.75 and 0.95. In general, for functions F1 - F5, a
convergence value of 0.75 forced the GA to import random members before good structure
had been developed, and led to an increased number of function evaluations. A convergence
value of 0.95 often required convergence of members to a local optimum which was already
present in the population. This also led to an excessive number of function evaluations.

For F'6, a unimodal function, a convergence ratio of 0.95 provides the best performance.
For this function, the population could not settle into a local optimum and could continue

useful schema processing to a higher degree of convergence.
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As with the steady state GA, each population member is 20 bits long. The same

experimental constraints are also present.

VII. Experimental Results

The experiments provided a measure of difficulty for each of the six functions in the suite.
Figures 1a-1f present a comparison of the performance of the steady state GA with immi-
gration (dashed bars) and without immigration (solid bars) on functions F1 - F6 of the test
suite. Figures 8a-8f present a comparison of the performance of the restarted GA. These
plots reflect the average number of evaluations required by the GA to find the optimum
value of each function. The number of immigrations per generation that produced these
results is labeled in each figure.

Based on the experimental results, both GA’s easily solved function F6 (ONEMAX)
which is a unimodal function. This was to be expected. Functions F1 (ODDEVEN) and
F3 (DECEPT2) proved only a little more difficult to the GA’s. This indicates that the
GA does a good job assembling low-order optimal schemata into an optimal string. It also
indicates that the GA can overcome some deception in its search.

Function F4 (MIRROR) was next in level of difficulty, followed at a distance by F5
(EIGHTAWAY). Both of these functions required the development of high-order schemata
and the consistency of low-order building blocks. The difficulty of the GA in achieving the
global optimum of each function may be due to the crossover operation used. The strength of
one-point crossover is its ability to assemble low-order building blocks into optimal strings.
High-order schemata have a greater chance of being destroyed, as was demonstrated by
these experiments. Perhaps the performance of the GA’s would improve using a crossover
mechanism that is less positionally biased.

Function F2 (DECEPT1), a two-bit deceptive function, proved extremely difficult to
both GA’s. When compared to function F3, a one-bit deceptive function, one can see that
increased deception has a profound effect on the optimization capabilities of a GA.

The next sections describe in detail the experimental results, and examine effects of

immigration on a Genetic Algorithm.

A. Steady state GA

The smallest average number of evaluations for functions F1 - F5 occurred when immigration

was present. This was expected, since these functions contain many local optima. For
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function F6, the steady state GA without immigration outperformed the modified GA.
Again, this was predicted, since F6 is a unimodal function.

It is important to note that these figures provide the best results of the steady state
GA with immigration. The immigration rate that performed best for a function is called
the “optimal” immigration rate for that function. In general, all immigration rates (greater
than 0) up to and including the optimal rate resulted in an improvement in performance
over the non-modified GA.

For function F1, (Fig. 1a) the GA without immigration produced the best results
at a population size of 80 and required an average of 1688 function evaluations to find
the optimum solution. With 2 immigrations per generation at a population size of 60,
the GA required only 1352 function evaluations. Therefore, the GA without immigration
resulted in a 24.8 percent increase in search time over the GA with immigration. In fact for
each function F1 - F5, immigration resulted in a reduction in the number of function
evaluations.

Examining Figure 1, it is interesting to note that for most of these functions, the re-
duction in function evaluations using immigration is largest for small populations, and
decreases as the population size increases. This indicates that the smaller populations re-
quire the added exploration that immigration provides, while larger populations possess
sufficient exploration power.

Also, in most trials shown in Figure 1, the GA with immigration performed better than
a GA with 10 more population members without immigration. This provides more evidence
that immigration allows the GA to search the space of a larger population.

Further, in F1, F3 and F5 the optimum with immigration occurs in smaller populations
than the optimum without immigration. This lends credence to the theory that immigration
allows small populations to retain their selection pressure. This is demonstrated further in
Figures 2-7.

The histograms in Figures 2-7 present the results of 500 GA trials on each function with
and without immigration. The figures present the number of trials (Y axis) that require
a given number of function evaluations (X axis) to find the global optimum for a range of
population sizes. The different population sizes are represented by solid, dashed and dotted
lines. Figures 2a - 7a show results of the GA without immigration. Figures 2b - 7b show the
results with optimal immigration. For example, in Figure 2a, the GA without immigration
and a population size of 40 (solid line) found the optimal solution in 200 function evaluations
(X axis) in 129 out of its 500 separate trials for function F1.

In order to reduce the length of the X axis, all trials that require an excessive number
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of function evaluations are grouped together at the last point on the X axis. For example,
in Figure 2a, the GA with no immigrations and a population size of 40 had 78 points that
required more than 5000 evaluations to find the optimal solution. These points are referred
to as “outliers”.

Examining the results of the GA without immigration (2a - 7a), one can see that the
peak generally shifts to the right with increasing population size. This demonstrates the
decrease in selection pressure, which inhibits the GA from finding easy solutions quickly.
From these figures, one also notes that increasing population size reduces the number of
outliers. This indicates that an increase in population size increases the exploration power
of the GA.

Let us now compare the GA without immigration to the GA with immigration. As
shown in Fig. 2, the GA with immigration (Fig. 2b) has significantly fewer outliers than
the GA without immigration (Fig. 2a). This is an example of how immigration can increase
exploration. Further, the peaks of Fig. 2b occur at about the same number of function
evaluations (X axis) as the peaks in Fig. 2a. As discussed above, if selection pressure was
decreased by immigration, we could expect the peaks in Figure 2b to be shifted right of
the peaks in 2a. This is not the case, so the GA with immigration maintains selection
pressure and ezploitation power.

Figures 3 and 4 present similar results. Further, for these functions the magnitude of
the peaks actually increased with immigration. This is due to the reduction in the number
of function evaluations for trials to the right of the peaks, another indication of increased
exploration.

Figures 5 and 6 show the peaks occurring near the same X axis location, but again show
that immigration does not always eradicate all the outliers for various population sizes. It
does show, however, that immigration still reduces the number of outlying trials. Since
these outliers contribute heavily to the average number of function evaluations required to
find the optimum (Figure 1a-f), it is clear that eliminating outliers reduces this value.

Figure 7 shows the result of function F6 with no immigrations and with 1 immigration.
These experiments verified our prediction that a steady state GA with immigration would
perform poorly on a unimodal function. As shown by the plot, immigration shifted the peak
to the right and reduced it. The average number of evaluations rose from 358 (without
immigration) to 461 (with immigration). In this case, immigration did not achieve the
balance between added evaluations and missing population structure. This indicates that
immigration is not necessary for functions in which the structure can be selected reliably

and propagated easily through the population of a steady state GA.
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Overall, these experiments show that a population size between 60 and 70 members
performs best for the steady state GA described above. To improve performance, an im-
migration rate of 2 or 3 members per generation should be used on functions that contain

difficult local optima.

B. Restarted GA

As with the steady state GA, the smallest average number of evaluations for functions F1 -
F5 occurred when immigration was present in the restarted GA. This was predicted, since
these functions contain many local optima.

However, for function F6, the unimodal function, the restarted GA with immigration
outperformed the GA without immigration. This indicates that adding random members
during convergence improves the efficiency of a restarted GA over both unimodal and mu-
timodal functions. This phenomena is quite interesting, and should be studied in further
detail.

Again, these figures provide the best results of the restarted GA with immigration. In
general, all immigration rates (greater than 0) up to and including the optimal rate resulted
in an improvement in performance over the non-modified GA.

These experiments show that a population size between 16 and 20 members performs
best for the restarted GA described above. To improve performance, an immigration rate
of 2 or 3 members per generation should be used on functions that contain difficult local
optima. Unimodal functions are more efficient at smaller populations, and can also be

benefit from the effects of immigration.

VIII. Conclusions

This study has examined the tradeoff between exploration and exploitation in Genetic
Algorithms. It proposed that a GA could increase exploration power while maintaining
selection pressure by replacing poor performing individuals in a population with random
members.

The results of the experimentation show that immigration improves the performance of
steady state GA’s when optimizing functions that contain local optima which are difficult
to avoid or escape. The experiments also show that immigration improves performance for
a spectrum of functions using a restarted GA.

Although these experiments are complete, there are several recommendations for future

work. Testing immigration on a generational GA would be the next logical step of this
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research. Also, a further examination of immigration vs. restart would be in order. Finally,
testing functions F4 (MIRROR) and F5 (EIGHTAWAY) using a less positionally biased
crossover operator, such as uniform crossover, would prove interesting.

In conclusion, this study demonstrates that immigration is a viable operator for improv-

ing the efficiency of GA’s on difficult optimization problems.
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